首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   702篇
  免费   141篇
  国内免费   88篇
化学   474篇
晶体学   7篇
力学   41篇
综合类   2篇
数学   97篇
物理学   310篇
  2024年   3篇
  2023年   12篇
  2022年   21篇
  2021年   29篇
  2020年   36篇
  2019年   24篇
  2018年   27篇
  2017年   34篇
  2016年   42篇
  2015年   30篇
  2014年   58篇
  2013年   51篇
  2012年   74篇
  2011年   83篇
  2010年   38篇
  2009年   38篇
  2008年   21篇
  2007年   58篇
  2006年   36篇
  2005年   29篇
  2004年   17篇
  2003年   19篇
  2002年   23篇
  2001年   20篇
  2000年   13篇
  1999年   7篇
  1998年   4篇
  1997年   12篇
  1996年   8篇
  1995年   3篇
  1994年   5篇
  1993年   7篇
  1992年   5篇
  1991年   3篇
  1990年   16篇
  1989年   9篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1982年   2篇
  1981年   3篇
  1979年   1篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
排序方式: 共有931条查询结果,搜索用时 31 毫秒
1.
A novel tiled Ti:sapphire(Ti:S)amplifier was experimentally demonstrated with>1 J amplified chirped pulse output.Two Ti:S crystals having dimensions of 14 mm×14 mm×25 mm were tiled as the gain medium in a four-pass amplifier.Maximum output energy of 1.18 J was obtained with 2.75 J pump energy.The energy conversion efficiency of the tiled Ti:S amplifier was comparable with a single Ti:S amplifier.The laser pulse having the maximum peak power of 28 TW was obtained after the compressor.Moreover,the influence of the beam gap on the far field was discussed.This novel tiled Ti:S amplifier technique can provide a potential way for 100 PW or EW lasers in the future.  相似文献   
2.
3.
4.
5.
The mechanisms of CO2 coupling with the propargylic alcohol using alkali carbonates M2CO3 (M = Li, Na, K, Cs) have been investigated by means of density functional theory calculations. The calculations reveal that the target product tetronic acid (TA) is yielded through two stages: (a) the formation of the α-alkylidene cyclic carbonate (αACC) intermediate via Cs2CO3-mediated carboxylative cyclization of the propargylic alcohol with CO2, and (b) the conversion of the αACC intermediate with Cs2CO3 to produce the cesium salt of the TA. Since the overall kinetic barriers for the two stages are comparable and affordable, the excellent chemoselectivity to the TA should be primarily originated from the high thermodynamic stability of the cesium salt of the TA. Moreover, relative to the TA, the possibility to yield the by-product acyclic carbonate can be excluded due to the both kinetics and thermodynamic inferiority. This result is different from the organic base-mediated reaction. Alternatively, our calculations predict that CsHCO3 together generated with the cesium salt of the TA might also be an available mediating reagent for the incorporation of CO2 with the propargylic alcohol. Compared to other alkali carbonates M2CO3 (M = Li, Na, K), the stronger basicity of Cs2CO3 and the lower ionic potential of cesium ion can raise the effective concentration of the αACC intermediate, and thus the conversion of the αACC intermediate into the cesium salt of the TA can be achieved with high yield.  相似文献   
6.
The synthesis and catalytic applications of trivalent rare-earth metal alkyl complexes have been well developed, but the chemistry of divalent rare-earth metal alkyl complexes lagged much behind. Herein, we report the synthesis, structure, and catalytic applications of a samarium(II) monoalkyl complex supported by a β-diketiminato-based tetradentate ligand, [LSmCH(SiMe3)2] (L=[MeC(NDipp)CHC(Me)NCH2CH2N(Me)CH2CH2NMe2], Dipp=2,6-(iPr)2C6H3). This complex is synthesized by the salt metathesis reaction of samarium iodide [LSm(μ-I)]2 and KCH(SiMe3)2 in 63 % yield. Its structure is characterized by single-crystal X-ray diffraction, showing a distorted square-pyramid coordination geometry. This samarium(II) monoalkyl complex exhibits high catalytic activity in the hydrosilylation of aryl and methyl-substituted unsymmetrical internal alkynes with secondary hydrosilanes, selectively providing the α-(E) products in high yields.  相似文献   
7.
The biosynthesis of tryptophan tryptophylquinone, a protein‐derived cofactor, involves a long‐range reaction mediated by a bis‐FeIV intermediate of a diheme enzyme, MauG. Recently, a unique charge‐resonance (CR) phenomenon was discovered in this intermediate, and a biological, long‐distance CR model was proposed. This model suggests that the chemical nature of the bis‐FeIV species is not as simple as it appears; rather, it is composed of a collection of resonance structures in a dynamic equilibrium. Here, we experimentally evaluated the proposed CR model by introducing small molecules to, and measuring the temperature dependence of, bis‐FeIV MauG. Spectroscopic evidence was presented to demonstrate that the selected compounds increase the decay rate of the bis‐FeIV species by disrupting the equilibrium of the resonance structures that constitutes the proposed CR model. The results support this new CR model and bring a fresh concept to the classical CR theory.  相似文献   
8.
The quality of perovskite layers has a great impact on the performance of perovskite solar cells (PSCs). However, defects and related trap sites are generated inevitably in the solution-processed polycrystalline perovskite films. It is meaningful to reduce and passivate the defect states by incorporating additive into the perovskite layer to improve perovskite crystallization. Here an environmental friendly 2D nanomaterial protonated graphitic carbon nitride (p-g-C\begin{document}$_3$\end{document}N\begin{document}$_4$\end{document}) was successfully synthesized and doped into perovskite layer of carbon-based PSCs. The addition of p-g-C\begin{document}$_3$\end{document}N\begin{document}$_4$\end{document} into perovskite precursor solution not only adjusts nucleation and growth rate of methylammonium lead tri-iodide (MAPbI\begin{document}$_3$\end{document}) crystal for obtaining flat perovskite surface with larger grain size, but also reduces intrinsic defects of perovskite layer. It is found that the p-g-C\begin{document}$_3$\end{document}N\begin{document}$_4$\end{document} locates at the perovskite core, and the active groups -NH\begin{document}$_2$\end{document}/NH\begin{document}$_3$\end{document} and NH have a hydrogen bond strengthening, which effectively passivates electron traps and enhances the crystal quality of perovskite. As a result, a higher power conversion efficiency of 6.61% is achieved, compared with that doped with g-C\begin{document}$_3$\end{document}N\begin{document}$_4$\end{document} (5.93%) and undoped one (4.48%). This work demonstrates a simple method to modify the perovskite film by doping new modified additives and develops a low-cost preparation for carbon-based PSCs.  相似文献   
9.
The surface chemical modified aluminum hypophosphite (AHP) defined as MAHP was successful prepared through P–H bonds on AHP surface reacted with the aldehyde groups in hexa‐(4‐aldehyde‐phenoxy)‐cyclotriphosphazene made in our lab. The wettability of the flame retardants was evaluated by water contact angle tests, and the water contact angle of the prepared MAHP dramatically increased from 0° for AHP to 145°, which indicated the surface modification made the superhydrophilic AHP into superior hydrophobic MAHP. The prepared MAHP and AHP, respectively, incorporated into polyamide 6 (PA6) matrix to prepare flame retardant PA6 composites and the fire retardancy and thermal degradation behavior of flame retardant PA6 composites were investigated by limiting oxygen index, vertical burning test (UL‐94), cone calorimeter, and thermogravimetric analysis tests. The morphologies and chemical compositions of the char residues for PA6 composites were investigated by scanning electron microscopy and X‐ray photoelectron spectroscopy, respectively. The water resistant properties of flame retardant PA6 composites were evaluated by putting the samples into distilled water at 70°C for 168 hr, and the mechanical properties for flame retardant PA6 composites were investigated by the tensile, flexural, and Izod impact strength tests. The results demonstrated that the PA6/MAHP composites successfully passed UL‐94 V‐0 flammability rating, and the limiting oxygen index value was 27.6% when the loading amount of MAHP was 21 wt%. However, there is no rating in vertical burning tests for PA6/AHP composite with the same amount of AHP, which indicated the surface modification of AHP enhanced the flame retardancy efficiency for PA6 composites. The morphological structures and analysis of X‐ray photoelectron spectroscopy of char residues revealed that the surface modification of AHP benefited to the formation of a sufficient, flame retardant elements rich, more compact and homogeneous char layer on the materials surface during combustion, which prevented the heat transmission and diffusion, limit the production of combustible gases, inhibit the emission of smoke and then led to the reduction of the heat release rate and smoke produce rate. The mechanical properties results revealed that the surface modification of AHP enhanced the mechanical properties, especially the Izod impact strength comparing with that of PA6/AHP composites with the same amount of flame retardant. After water resistance tests, the PA6/MAHP composites remained superior flame retardancy and presented continuous and compact char layer after cone calorimeter tests; however, the fire retardancy for PA6/AHP composite obviously decreased, and the char layer was discontinuous with big hole caused by the extraction of AHP by water during water resistance tests. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
10.
A new dual chemosensor (TTF-PBA) for Fe3+ and Cu2+ in different signal pathways was designed and synthesized. The absorption spectrum, fluorescence spectrum and cyclic voltammograms changed in the presence of Cu2+ and Fe3+. The optical color changed within 5 s from yellow to orange upon the addition of Cu2+, and it changed to dark yellow when Fe3+ existed. The cyclic voltammogram of Cu2+/TTF-PBA changed from Eox = 0.50 V, Ered = 0.32 V to Eox = 0.64 V, Ered = 0.80 V (vs Ag/AgCl) upon the addition of 2.0 equiv. Cu2+. As for Fe3+/TTF-PBA, its oxidation wave disappeared, and its reduction wave appeared at Ered = ?0.59 V (vs Ag/AgCl) upon the addition of 4.0 equv. Fe3+. The sensor displayed high selectivity for Cu2+ and Fe3+ over other ions including Pb2+, Zn2+, Ni2+, Ag+, Cr3+, Mn2+, Al3+, Co2+, Pd2+, Hg2+, Fe2+, Cd2+, Ce3+, Bi3+ and Au3+, the detection limits for Cu2+ and Fe3+ ion reached as low as 5.33 × 10?7 mol/L and 5.34 × 10?7 mol/L, respectively. Furthermore, when Fe3+ existed, Cu2+ can be detected sequentially by the sensor through the absorption spectrum and the color change observed by naked-eyes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号